MAX materials and MXene materials are new two-dimensional materials who have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in numerous fields. This is a comprehensive guide to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the three components of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is really a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X refers to the components of C and N. The MXene material is really a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials make sure they are have a wide range of applications in structural materials. As an example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be utilized in energy materials. For example, K4(MP4)(P4) is one in the MAX materials rich in ionic conductivity and electrochemical activity, which can be used as a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can connect with more functional atoms and molecules, along with a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually are the etching management of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials certainly are a new form of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to improve the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which can realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with the continuous progress of technology and science and the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials is going to be further expanded and improved. The subsequent aspects could become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques can be further explored to understand a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, however, there is still room for more optimization. In the future, the composition, structure, surface treatment along with other facets of the fabric could be studied and improved thorough to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be popular in many fields, but there are still many potential application areas to get explored. Down the road, they may be further expanded, including in artificial intelligence, biomedicine, environmental protection as well as other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in lots of fields. With all the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.